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Treatment of peracetylated sugar trichloroacetimidates with dipyrromethane in the presence of boron
trifluoride diethyl etherate gave peracetylated glycosyl dipyrromethanes in good yields. Regio- and ste-
reo-selectivity of the glycosylation reactions were established.

� 2009 Elsevier Ltd. All rights reserved.
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In the past two decades, a number of methods have been devel-
oped for the synthesis of C-glycosides, which are useful analogues
in organic synthesis, drug design, and glycobiology due to their in-
creased resistance to enzymatic and chemical degradation.1–12 In
the course of our research, fluorophores that are suitable for label-
ing biomolecules such as carbohydrates and nucleic acids are re-
quired. These fluorophores should be relatively insensitive to pH
and polarity changes, stable in physiological conditions, and emit
intense fluorescence. Additionally, they should allow for easy
incorporation into the biomolecule to be labeled. In this regard,
4,4-difluoro-4-bora-3a,4a-diaza-s-indacenes (BODIPY 1)13–16 meet
most of these requirements. As such, BODIPY analogues have been
used in the labeling of proteins and nucleic acids.17–20 However, a
method that allows for incorporation of BODIPY into carbohydrates
via glycosydic linkages remains elusive. In this regard, an approach
that enables the preparation of glycosyl dipyrromethanes (2 where
one of the R1, R2, or R3 is a glycosyl substituent) is desirable. These
glycosyl dipyrromethanes can be oxidized to dipyrromethene 3 by
2,3-dichloro-5,6-dicyano-1,4-benzoquinone (DDQ) or p-chlora-
nil,21,22 and followed by treatment with boron trifluoride diethyl
etherate to give carbohydrate-derivatized BODIPY 4 (Scheme 1)
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Nucleophilicity of pyrrole and its analogues has been utilized in

C–C bond formation.23–26 This approach is particularly efficient
when a good electrophile, such as a carbocation, is present. An acti-
vated sugar donor, such as trichloroacetimidate, gives rise to such
electrophiles when a Lewis acid, such as boron trifluoride, is pres-
ent. Therefore combination of suitably protected sugar trichloro-
acetimidates and pyrrole analogues would enable the synthesis
of C-glycosides bearing pyrrole substitution. Such a method has
been shown to produce glycosyl pyrrole analogues.27 We now
demonstrate the synthesis of glycosyl dipyrromethanes, which
can be further transformed into sugar substituted BODIPYs.

Peracetylated monosaccharides (D-glucose, D-galactose, and
D-mannose) trichloroacetimidates28 and dipyrromethane29 were
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Scheme 1. Reagents: (i) DDQ (or Chloranil); (ii) BF3�Et2O, DBU (or NEt3).



Table 1
Isolated glycosylation yields

Entry Yield (%)

1 Glucosyl dipyrromethane 7 91a

2 Galactosyl dipyrromethane 8 87a

3 Mannosyl dipyrromethane 9 72b

a b-Anomer.
b a-Anomer.
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Figure 2. Selected NOEs observed in mannosyl dipyrromethane 9.
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Scheme 2. Reagents and conditions: (i) BF3�Et2O, CH2Cl2, �20 �C.
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readily prepared using literature methods. When 2,3,4,6-O-tetra-
acetyl-a-D-glucosyl trichloroacetimidate 5 was mixed with five
molar equivalence of dipyrromethane 6 followed by addition of
boron trifluoride diethyl etherate (Scheme 2), 1-(2,3,4,6-O-tetra-
acetyl-b-D-glucosyl) dipyrromethane 7 was isolated in 91% yield
after column chromatography.30 The excess of dipyrromethane
was readily recovered by column chromatography.

The glycosylation reaction proceeds in a regio- and stereo-selec-
tive fashion for the glucosyl analogue 7. The NOEs between H-10

and H-30, and H-10 and H-50 protons, which would not be observa-
ble in the a-anomer, suggest that b-C-glucoside was obtained. The
stereochemistry is also evident by the relatively large coupling
constant of 9.8 Hz between H-10 and H-20 protons (see Fig. 1).

This glycosylation chemistry was similarly effective in the
formation of peracetylated D-galactosyl and D-mannosyl dipyrrom-
ethanes (Table 1). The regio- and stereo-selectivity of the C-glyco-
sylation were maintained in the case of the D-galactosyl derivative
8, but a-D-mannosyl dipyrromethane 9 was obtained as the major
product in >70% yield, possibly due to neighboring 20-O-acetate
participation. The anomeric stereochemistry of the mannosyl ana-
logue is evident based on the following NOE observations: (i) lack
of NOEs between H-10 and H-30, and H-10 and H-50, which were ob-
served in both b-anomers of glucosyl and galactosyl analogues (7
and 8), and (ii) the observed NOEs between H-20 and H-2, H-30

and H-2, and H-30 and H-3 (Fig. 2).
The peracetylated glycosyl dipyrromethanes appear to be sensi-

tive to both oxygen and light. They develop light brown and even-
tually dark colors upon exposure to light and oxygen, but stay
virtually unchanged when exposure was avoided. The acetyl
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Figure 1. 1H NMR and some NOEs observed in glucosyl dipyrromethane 7.
groups were readily removable by treatment with sodium methox-
ide in methanol when required.
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